[tex]( - \frac{3}{5} ) \times ( - \frac{3}{5} ) \times ( - \frac{3}{5} ) \times ( - \frac{3}{5} )[/tex]
2. Bentuk perkalian berulang dari
[tex] {5}^{ - 5} [/tex]
3. Hasil dari
[tex]6 \sqrt{125} \div 4 \sqrt{5} [/tex]
4. Tentukan hasil dari
[tex] \frac{ {a}^{3 } { \times (3a)}^{ - 2} }{ {b}^{ - 3} } [/tex]
Penjelasan dengan langkah-langkah:
1.)
[tex] = ( - \frac{3}{5} ) \times ( - \frac{3}{5} ) \times ( - \frac{3}{5} ) \times ( - \frac{3}{5} )[/tex]
[tex] = ( - \frac{3}{5} ) {}^{4} [/tex]
2.)
[tex] {5}^{ - 5}[/tex]
[tex] = \frac{1}{ {5}^{5} } [/tex]
[tex] = \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} [/tex]
3.)
[tex]6 \sqrt{125} \div 4 \sqrt{5}[/tex]
= 6.5√5 ÷ 4√5
= 30√5 ÷ 4√5
= 30/4
= 15/2
= 7,5
4.)
[tex]\frac{ {a}^{3 } { \times (3a)}^{ - 2} }{ {b}^{ - 3} }[/tex]
[tex] = \frac{ {a}^{ 3}. {3}^{ - 2} . {a}^{ - 2} }{ {b}^{ - 3} } [/tex]
[tex] = \frac{a {}^{3 + - 2}.b {}^{3} }{ {3}^{2} } [/tex]
[tex] = \frac{a {b}^{3} }{9} [/tex]
Penyelesaian:
(-3/5)×(-3/5)×(-3/5)×(-3/5)
=(-3/5)⁴
Karena 4 kali berturut"
----------------------------------
5^-5
=1÷5÷5÷5÷5÷5
Karena 5⁰=1
Maka
5^-1=1÷5
dst
-----------------
6√125÷4√5
6/4√25
=6/4×5
=30/4
=7,5
----------------------------------
a³×(3a)^-2/b^-2
=a³×b²/(3a)²
=a³×b²/9a²
=ab²/9
[tex]\boxed{ \colorbox{black}{ \sf{ \color{lightgreen}{ answered\:by\:Duone}}}}[/tex]
[answer.2.content]